Morita-extensions and nearness-completions
نویسندگان
چکیده
منابع مشابه
Macneille Completions and Canonical Extensions
Let V be a variety of monotone bounded lattice expansions, that is, bounded lattices endowed with additional operations, each of which is order preserving or reversing in each coordinate. We prove that if V is closed under MacNeille completions, then it is also closed under canonical extensions. As a corollary we show that in the case of Boolean algebras with operators, any such variety V is ge...
متن کاملOn profinite completions and canonical extensions
We show that if a variety V of monotone lattice expansions is finitely generated, then profinite completions agree with canonical extensions on V . The converse holds for varieties of finite type. It is a matter of folklore that the profinite completion of a Boolean algebra B is given by the power set of the Stone space of B, or in the terminology of Jónsson and Tarski [5], by the canonical ext...
متن کاملCanonical Extensions and Profinite Completions of Semilattices and Lattices
Canonical extensions of (bounded) lattices have been extensively studied, and the basic existence and uniqueness theorems for these have been extended to general posets. This paper focuses on the intermediate class S∧ of (unital) meet semilattices. Any S ∈ S∧ embeds into the algebraic closure system Filt(Filt(S)). This iterated filter completion, denoted Filt(S), is a compact and ∨∧ -dense exte...
متن کاملA Morita context and Galois extensions for Quasi-Hopf algebras
If H is a finite dimensional quasi-Hopf algebra and A is a left H-module algebra, we prove that there is a Morita context connecting the smash product A#H and the subalgebra of invariants A . We define also Galois extensions and prove the connection with this Morita context, as in the Hopf case.
متن کاملCanonical extensions and completions of posets and lattices
A b s t r a c t. The purpose of this note is to expose a new way of viewing the canonical extension of posets and bounded lattices. Specifically, we seek to expose categorical features of this completion and to reveal its relationship to other completion processes. The theory of canonical extensions is introduced by Jónsson and Tarski [15, 16] for Boolean algebras with operators. Their approach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1998
ISSN: 0166-8641
DOI: 10.1016/s0166-8641(97)00043-6